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Abstract. Diagonal Padd approximations to the time evolution operator for initial value prob-

lems are applied in a novel way to the numerical solution of these problems by explicitly factoring
the polynomials of the approximation. A remarkable gain over conventional methods in efficiency
and accuracy of solution is obtained.
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1. Introduction. We consider homogeneous linear evolution equations of the
form

(1) 0--- H(t),

where H(t) is a linear operator. The solution of this equation is

v(t) u(t,

U is the familiar time evolution operator,

(3) (/o’ )U(t, 0) exp dt H(t)

When H(tl) does not commute with H(t2), (3) must be interpreted in the time-ordered
sense.

All numerical methods for the solution of (1) approximate U in some way, often
by the first few terms in the Taylor series for ez. Euler’s method, for example, retains
just the first term in this series and has U(t / At, t) 1 + AtH(t). The Pad methods
are based on rational function approximations to eZ:

(4) ez
PM(Z)
QN(Z)

Here PM(Z) and Qg(z) are polynomials in z with real coefficients of order M and N,
respectively [15]. For the most part, we will treat only the diagonal Padd approxima-
tions to ez for which N M and QM(Z) PM(--z). The simplest of these diagonal
Pad methods is the "Crank-Nicolson" or "trapezoidal" method [6] for which M 1
and P1 (z) 1 + z/2. Like all of the N > 0 Pad methods, the Crank-Nicolson method
is implicit in that it requires the inversion of an operator:

( ) (AtH(t))(5) 1-
AtH(t) (t+At)-- 1+ (t).
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Although widely studied [31,[4],[71,[81,[9],[20],[21], high-order implicit Pad6 meth-
ods are not commonly used, presumably because of their apparent complexity [20].
Diagonal Pad6 methods are known to have optimal accuracy [21] and the odd-order
methods also preserve positivity [9].

The main aims of this work are, first, to point out that higher-order implicit
Pad6 methods need be no more complicated to implement than the Crank-Nicolson
method, and, second, to show that surprising increases in accuracy and efficiency can
be obtained by using these methods.

The original motivation for studying these methods comes out of our efforts to
numerically simulate the behavior of plasmas in controlled thermonuclear fusion ex-
periments. The analytical model used for such plasmas is a system of resistive magne-
tohydrodynamic (MHD) equations. This is a system of nonlinear hyperbolic equations
which contain parabolic and elliptic components. An enormous range of time scales
is contained in these equations. Fast compressional waves have a characteristic time
of 10-6 seconds in a typical fusion device, while the typical length of an experiment
is several seconds.

Our main interest, however, is in accurate simulation over the shear Alfv6n wave
times of 10-5 seconds or even longer resistive times of 10-3 seconds. Analytical
methods exist for eliminating the faster time scales in these problems but they are
too restrictive to apply in the general case. The convenient solution is to use implicit
methods with timesteps appropriate to the longer times which are numerically stable in
the presence of the fast waves. These latter are then not faithfully simulated. However,
in a dynamically stable plasma configuration, they are thought to be unimportant and
can be safely neglected.

The usual technique by which the MHD equations are given an implicit numerical
character are variations on the Crank-Nicolson method. Given the longer timesteps
allowed by these implicit methods, the simulation of an entire one-second plasma shot
would still take a prohibitive amount of time, even on a parallel vector computer.
Methods which would allow us to further increase the timestep or reduce the number
of operations needed to simulate to a given accuracy would be invaluable. The diagonal
Pad6 methods to be described are, we hope, such methods but more work is required
to establish this.

2. The factorization method. We write the numerator polynomial of the
Mth-order diagonal Pad6 approximation to ez in factorized form as

(6) PM(Z) 1-
m:l

Here Cm are the roots of PM(Z). An important fact is that all of these roots are
distinct, nonzero, and have negative definite real part [3],[4],[7],[8],[17],[20],[21]. Table
1 gives numerical values of the roots of the diagonal Pad polynomials up to M 11,
and an interesting illustration of the poles and zeros of the first 20 diagonal Pad
approximations to ez is given in Fig.1.

The roots of QM(Z) PM(--z) are just -Gin. Since these roots are either real or
occur in complex conjugate pairs, the poles of the diagonal Pad approximation are
just the reflection of the zeros across the y axis. We can then write the Mth-order
diagonal Pad approximation to ez, with C as the complex conjugate of Cm, as

PM(Z) M 1- z/Cm
+ z/C
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TABLE 1

Roots of the first 11 diagonal Padd approximations to ez.
Only the roots of nonnegative imaginary part are given.

Order Real part Imaginary part
1 -2.0 0.0
2 -3.0 1.732050807568877
3 -4.644370709252172 0.0

-3.677814645373914 3.508761919567444
4 -5.792421205640744 1.734468257869007

-4.207578794359256 5.314836083713505
5

10

11

7.293477190659323
-6.703912798307045
-4.649348606363293
-8.496718791726729
-7.471416712651628
-5.031864495621643
-9.943573717055878
-9.516581056309254
-8.140278327276275
-5.371353757886532
11.17577208652617
-10.40968158127378
-8. 736578434404781
-5.677967897795266
-12.59403836343024
12.25873580854839
-11.20884363901552
-9.276879774360831
-5.958521596360136
13.84408981085430
-13.23058193095358
11.93505665717623

-9. 772439133717648
-6.217832467298239
-15.24467969165087
-14.96845972142817
-14.11578477534349
-12.60267490974686
-10.23129656781539
-6.459444179840646

0.0
3.485322832366408
7.142045840675948
1.735019346462726
5.252544622894256
8.985345907307884

0.0
3.478572122261069
7.034348095419513
10.84138826143350
1.735228890705500
5.232350305285130
8.828885000943038
12.70782259720976

0.0
3.475696766962232
6.996313835771842
10.63454335087136
14.58292737668437
1. 735330390904289
5.223135841597920
8.769894377885137
12.44997096494290
16.46539891814719

0.0
3.474205641536712
6.978029007087853
10.55238348739988
14.27404151778648
18.35422313741710



832 M. E REUSCH, L. RATZAN, N. POMPHREY, AND W. PARK

4O

--40
-40 -20 0 20

FIG. 1. Poles and zeros of the first 20 diagonal Padd approximations to ez are illustrated. These
critical points of the approximation for fixed order generate a roughly elliptical figure whose radius
increases with order. The zeros are well separated in the complex plane. Odd-order approximations
have one negative real zero while even-order approximations have no real zeros.

Each of the factors in the above form of the approximation has the A-stability
property, namely that for real part of z < 0

1 z/Cm

This A-stability property is shared by the whole approximation given by (7) and is a
well-known property of all the Pad6 approximations to ez for which N M,M + 1 or
M + 2 [7],[8].

We now observe that (7) is a valid approximation to the timestep evolution op-
erator U(t + At, t) if AtH(t) is substituted for z and a proper interpretation is made
of the inverse operators. Our solution procedure is to unfold the products of (7) pair
by pair. Each substep of a given timestep is of the form

Atg(t) m= 1-+

where 1 m M, o (t) and (t + At) M.
Although complex arithmetic must be used, each step of this process is as simple

as one step of the Crank-Nicolson method requiring only an algorithm for numerical
inversion of H(t). As we shall see, the extra work done by using complex arithmetic
is more than made up for by an increase in accuracy. Further, the same numerical
algorithm can be conveniently used for an arbitrary order diagonal Pad method. We
also see that each substep of the method is A-stable so that no transitory instabilities
cn occur.

If we start from real initial values for and H(t) is a real operator, then after
the first substep of the method we have complex values. Clearly, after M steps we
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must have real values again since the overall product is real. The magnitude of the
complex part after M substeps then gives us the truncation error of the process. On
the other hand, if H(t) is a complex operator, i.e., has complex eigenvalues, or if is a
complex variable, then the overhead associated with complexification of the problem
is saved. Complex are implied in multidimensional problems where one or more
periodic dimensions are Fourier analyzed to yield a simpler and sometimes decoupled
form for H(t), which is then also more easily inverted.

Since the roots of PM(Z) are all distinct and well separated in the complex plane,
it is easy to obtain numerical approximations to them. All that is necessary is that
they multiply up to the correct coefficients within a tolerable error. The slight error
introduced by using truncated numerical approximations to them is not an essential
limitation of the method.

The coefficients of PM(Z) are known in closed form[4],[8],[17],[21]:
M /1//!(2/1//-- rn)!(10) PM(Z) E (2M)m(M m)n----O

The numerical values of Table 1 when combined yield the known analytic values of
the coefficients of the numerator polynomial to better than one part in 1015

The polynomials satisfy a number of useful recursion relations and the error in
the approximation is [11]

eZ PM(Z) + RM(Z) where,
Q (z)

(11) RM(Z) r(--1)Mz2M+iez (1 +

so that tolerable errors are possible even when Izl > 1; i.e., the timestep is larger than
the characteristic time Tc of H(t). The latter may be defined as the inverse of the
magnitude of the largest eigenvalue of interest in the spectrum of U(t), Tc

Our numerical studies indicate that the sometimes surprising convergence of Pad6
approximations carries over into the initial value problem. Faithful simulations are
obtained in some problems even for inordinately large timesteps (At MTc). In
fact, the permissible timesteps are so large that explicit variation of H(t) over a single
timestep becomes important. Until now we have tacitly assumed that this variation
was negligible. In our desired application of MHD simulation this may not be true.

Inclusion of a time-varying inhomogeneous term or boundary conditions in (1)
leads to a similar problem for large timesteps. These are also present in the MHD
equations. Possible resolutions for these problems exist via the method of variation of
parameters and transformation of H(t) to an almost time-invariant form. We plan to
treat these in a future work and will not discuss them any further here.

Although fundamentally linear, the factorized diagonal Pad6 method can be ap-
plied to autonomous nonlinear ordinary differential equations by embedding these in
a linear system via the technique of Carleman [1],[2],[5],[14],[18]. This application will
also be treated in a future work.

The factorization technique given here can also be used to approximate the ex-

ponential of a badly conditioned matrix, as, for example, the two-by-two-dimensional
test case of Moler and Van Loan [13]. Since for a large enough order method the con-
dition number of each of the substeps remains tolerable, we thereby avoid the problem
of a large condition of the total numerator or denominator expansions.

Since the complex roots occur in conjugate pairs, it is possible to rearrange the
terms of (7) into a product over real quadratic and real linear factors. Inversion of
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the quadratic terms for a tridiagonal diagonal matrix slightly more than doubles the
number of operations. Given an overhead of a factor of four for complex mathematics,
this real factors decomposition should be superior for real problems, while being only
slightly more difficult to implement. Saff, Schhnhage, and Varga [16] have investigated
yet another rational approximation which involves only real poles and linear terms in
the denominator.

If the order of the Pad6 method M is even moderately large, factored methods are
superior to direct multiplication by PM and inversion of QM for two reasons. First,
factorization avoids the large matrix elements of the direct method, which particularly
occur in stiff problems [13]. Second, factored methods are more efficient when applied
to banded matrices. The work needed to invert M tridiagonal matrices using the
factored method is proportional to K. M, where K is the order of the matrix H,
while that required to invert QM is proportional to K. M2, to leading order. Similar
remarks apply to the multiplication by PM, and the work needed to form PM and
QM, in the first place, is avoided.

Finally, we point out that there exist a number of implicit Runge-Kutta formulae
equivalent to diagonal and subdiagonal Pad6 approximations which use entirely real
mathematics. These have been studied by Ehle [7],[8] and others. Low-order methods
of this type are harder to implement than factorized methods but may be preferable
in some circumstances. However, the numerical solution of a system of N equations
by these methods requires the inversion of an N. M-by-N. M system, where M is the
order of the implicit Runge-Kutta method. A high-order method applied to a large
system is clearly unwieldy.

3. A numerical example. We have selected the homogeneous one-dimensional
heat equation as a simple example for the numerical testing of our method:

(12) Ot
a
Ox2

where 0 _< x _< W, (0, t) (W,t) 0, and a can be complex. We use a cen-
tered difference formula for the right-hand side diffusion operator so that the exact
eigenvalues of the discrete system are

(13) ,a 2a
(cos

kr
x-x2 -- 1).

Here 1 _< k < K and Ax W/K.
The discrete version of the right-hand side diffusion operator is a tridiagonal

matrix, as is the substep matrix of (9). The inversion is accomplished by the well-
known recursive algorithm equivalent to an LU factorization [12] so that the work
involved is only proportional to K.

We compare diagonal Pad6 methods implemented in the factorized form with
complex arithmetic to a real mathematics version of the Crank-Nicolson method and
several real arithmetic explicit methods. To compare the methods we select a single
eigenmode of (12) as our initial condition and follow it for a time period equal to a
given number of characteristic times Tc 1/I,k I.

We repeatedly solve the problem for this period while varying the total number
of timesteps from one to the number at which the maximum error saturates. For the
explicit methods we start at the minimum number of timesteps for which the method
is stable. At the final time the result of each different time discretization is compared
to the exact known solution. Maximum and average errors are extracted and the
processing time is recorded. The maximum error results are similar to those for the
average error and are not presented.
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Figure 2 shows the results of runs made on a Cray-1 computer using diagonal Pad6
approximations to order 11, labeled C1-Cll, Euler’s method (E), and Runge-Kutta
methods of order two (RK2), four (RK4), and six (RK6).

w

w

-15
-3

Cll

05 ’ RK6
RK4

-2 -I 0 2 3

LOG I0 CPU TIME (sec)

FIG. 2. The efficiency of factorized, complex arithmetic, diagonal Padd methods of orders 1
through 11, labeled C1-Cll, are compared to Euler’s method, labeled E, the Crank-Nicolson method,
labeled R1, and Runge-Kutta methods of orders 2 through 6, labeled RK2-RK6, implemented with
real mathematics, for ten characteristic times of the first eigenmode of the one-dimensional heat-

diffusion equation.

All these runs were made for a period of ten characteristic times of the lowest
k 1 eigenmode and are typical in that similar results are found for real, imaginary,
or complex a and for shorter or longer time periods. In this set of runs the loop
vectorization of the Cray-1 was turned off. The log of the average error is plotted
against the log of the CPU time used. The average error is defined as the average of
the absolute values of the difference between the computed and exact solutions divided
by eT, where T is the total time period.

For all implicit methods and for those explicit methods that are not already at
the precision limit, the logarithm of error decreases linearly with the logarithm of
CPU time until saturation due to rounding sets in at a machine, method, and period-
dependent precision level. This is in agreement with expected behavior since the error
is proportional to (At,)2M+l for the implicit Pad6 methods and (At))u+l for the
explicit methods, while the work involved varies as the inverse of the timestep and the
slope is proportional to the order of the method.

The M 1 Pad6 case, which was implemented with real arithmetic labeled R1,
is seen to use only about half the time of the fully complex C1 method. A factor of
four might have been expected and the difference is due to the fact that the Cray-1
unavoidably vectorizes some of the complex calculations even with vectorization off.

RK2 is seen to give about the same accuracy and use about the same time as R1
since the operation count and error of both methods is roughly the same. The M > 1
Pad6 approximations saturate at an error lower than the M 1 approximation. The
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efficiency of solution of the Pad6 methods improves as order increases, although the
incremental improvement from order to order becomes smaller with order.

Gains of 100 or more in CPU time over the M 1 Pad6 method and all the
explicit methods are obtained with the higher-order Pad6 methods depending on the
required accuracy. These gains are obtained despite the extra work implied by complex
arithmetic. For the M 11 method an accuracy of 10-5 was obtained with just one
timestep. The M 15 Pad6 method not shown was at the precision limit in one
timestep.

We note that our selection of the lowest eigenmode of the system has accentuated
the achievable improvement in efficiency over the explicit methods and that for the
higher modes this improvement would not be as dramatic or would not even exist.
Figure 3 presents the results of runs made for 10 characteristic times of the eleventh
eigenmode of the heat equation. Here the RK4 method is more efficient than the C2
method while the RK6 and C3 methods are of comparable efficiency.

RK6

-I 0 2
LOG I0 CPU TIME (sec)

FIG. 3. The efficiency of diagonal Padd methods through order 11, labeled C2-Cll, are
compared to Runge-Kutta methods of order 4 (RK4), and 6 (RK6) for ten characteristic times of
the eleventh eigenmode of the one-dimensional heat equation. The achievable gain in efficiency of
the Padd methods over the Runge-Kutta methods is reduced for this case which is not as stiff as

the system of Figure 1. C3 and RK6 are of comparable efficiency and the curves for these methods
actually overlap at several points. Complex arithmetic is seen to increase the rounding error by an

order of magnitude over that of the real methods in this figure.

Figure 3 also illustrates the fact that the minimum attainable errors of the high-
order real arithmetic explicit methods are smaller than those of the complex arithmetic
implicit methods. In this example they are an order of magnitude smaller. This is
due to the increase of rounding error of the complex calculations over that of the real
calculations. On the other hand, the implicit complex methods seem quite stable in
the presence of rounding error in that an excessively short timestep does not tend to
increase the attainable error.

When the Cray loop vectorization is turned on, the appropriately coded explicit
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methods increase in speed by approximately a factor of 5, while the nonvectorized
recursive inversion of the implicit Pad6 methods is only slightly faster. Even then,
the high-order Pad6 methods are still more efficient in the stiff system of Fig. 2.
We note that, although not implemented for this paper, techniques exist for partially
vectorizing the recursive inversion of tridiagonal matrices [10],[19]. It is likely that
even further improvement might be obtained with the incorporation of one of these
techniques and that, in principle, certain elements of the complex calculations might
be further vectorized as well.

4. Conclusions. We have presented a convenient method for the implementation
of high-order implicit diagonal Pad6 approximations for the solution of homogeneous,
exactly time-invariant or autonomous, linear operator, initial value problems, and have
demonstrated the remarkable efficiency of these methods in comparison with both
explicit methods and the Crank-Nicolson method. The central idea is a factorization
technique which yields an algorithm of simplicity comparable to the Crank-Nicolson
method. The same algorithm can be used for an arbitrary order diagonal Pad6 method
and might be applied with advantage to nondiagonal Pad6 approximations and other
methods.

The main limitations of the method to date are the requirements of exact or
approximate time invariance, linearity, and ease of inversion of the operator. Since
the same algorithm can be used for an arbitrary order method, an adaptive scheme
can be constructed where a low-order method with a small timestep is used when the
operator varies appreciably in time and a high-order large timestep method is used
otherwise.

Further work is needed to establish whether this method can be applied to more
practical problems which lie outside these limitations. However, the accuracy of the
higher-order diagonal Pad6 methods is such that careful consideration should be given,
concerning modification of codes that presently use the Crank-Nicolson method or its
variants, to use the scheme of this paper.
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